Lines and Angles; Triangles; Congruence of

Question 1	In the figure, which angles form a pair of alternate interior angles? - $\angle 1, \angle 2$ - $\angle 2, \angle 5$ - $\angle 2, \angle 3$ - none of above
Question 2	In quadrilateral $\mathrm{ABCD}, \mathrm{AD}=\mathrm{BC}$ and $\angle \mathrm{DAB}=\angle \mathrm{CBA}$. If $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$, what is the relation between $\angle \mathrm{ABD}$ and $\angle B A C$? - $\angle \mathrm{ABD}=\angle \mathrm{BAC}$ - $\angle \mathrm{ABD}>\angle \mathrm{BAC}$ - $\angle \mathrm{ABD}<\angle \mathrm{BAC}$ - none of above
Question 3	Which of the following letters of the English alphabet has line symmetry? - Q - W - P - Z

Question 4	In $\triangle \mathrm{PQR}$, what can be said about the line segment PM ? - It is the bisector. - It is the median. - It is the diagonal. - It is the altitude.
Question 5	What is the order of rotational symmetry of the object in the figure alongside, about the point marked as ' x '? - 0 - 2 - 1 - 3
Question 6	An angle of a linear pair is half of a right angle. What are the measures of the two angles? - $90^{\circ}, 45^{\circ}$ - $45^{\circ}, 135^{\circ}$ - $90^{\circ}, 90^{\circ}$ - $60^{\circ}, 120^{\circ}$
Question 7	In $\triangle \mathrm{PQR}$, length of the side QR is less than twice the length of the side $P Q$ by 2 cm . Length of the side PR exceeds the length of the side PQ by 10 cm . The perimeter is 40 cm . The length of the smallest side of the $\triangle \mathrm{PQR}$ is: - 6 cm - 8 cm - 7 cm - 10 cm

Question 8	If the exterior angle of a triangle is 108° and one of the interior opposite angle is 38°. The other interior opposite angle is - 138° - 60° - 70° - 72°
Question 9	In the quadrilateral $\mathrm{ACBD}, \mathrm{AC}=\mathrm{AD}$ and AB bisects $\angle A$. If $\triangle A B C \cong \triangle A B D$, then what is the relation between BC and BD ? - $\mathrm{BC}>\mathrm{BD}$ - $\mathrm{BC}<\mathrm{BD}$ - $\mathrm{BC}=\mathrm{BD}$ - none of above
Question 10	What is the number of lines of symmetry of the design in the figure? - 1 - 2 - 3 - 0

Answers

Answer 1	$\angle 2, \angle 3$
Answer 2	$\angle \mathrm{ABD}=\angle \mathrm{BAC}$
Answer 3	W
Answer 4	It is the altitude.
Answer 5	2
Answer 6	$45^{\circ}, 135^{\circ}$
Answer 7	8 cm
Answer 8	70°
Answer 9	$\mathrm{BC}=\mathrm{BD}$
Answer 10	0

